当前位置: 简表范文网 > 专题范文 > 公文范文 >

基于有限几何的量子CSS码的构造

| 来源:网友投稿

摘要:首先利用有限几何的特点构造经典低密度奇偶校验(LDPC)矩阵,然后通过对校验矩阵的行或列变换构造其对偶码,本文提出了一种以量子CSS码为理论基础的基于有限几何的量子LDPC码。并对其进行了充分的理论推导,从而使用有限几何构造量子LDPC码称为一种可行的途径。

关键词:有限几何;LDPC码;量子CSS码;对偶码

中图分类号:TP311文献标识码:A文章编号:1009-3044(2008)09-11745-02

Construction Quantum CSS Codes Based on Finite Geometries

YUE Ke-feng,XUN Chun-ling

(Nanjing University of Posts & Telecommunications,Nanjing 210003,China)

Abstract: Using the low density parity check matrices created by finite geometric approach with its dual codes, which are constructed by splitting the rows of the LDPC check matrices,a quantum LDPC codes construction method is proposed based on finite geometries in this paper. Finally, this method is proved by theory deduction adequately.

Key words: Finite Geometries; LDPC Codes; Quantum CSS Codes; Dual Codes

1 引言

与经典信道一样,由于环境的影响,量子通信中的信息传输和处理不可避免地会产生消相干(decoherence),借鉴经典纠错方法,量子纠错编码(quantum error correcting codes)技术成为克服这一问题的有效手段之一[1]。自95年以来,量子纠错码已成为编码界研究的方向,构造量子纠错编码的方法之一是借鉴经典纠错编码方法,目前很多经典纠错编码方案已移植到量子领域中,因此作为经典最好码的LDPC码的量子版本,量子LDPC码已成为这一领域的研究热点[2]。

低密度奇偶校验(LDPC)码又称为Gallager码,它是1962年Gallager提出的经典好码[3],随后的研究发现用迭代译码算法该码具有非常接近香农限的性能特性[4]。Gallager最初提出的随机构造的方法经过后来的研究表明需要较长的编译码时间[4-5]。对此,文献[5]中提出了基于有限几何的方法构造LDPC码,实现了编码时间与码长成线性关系,并且基于有限几何的LDPC码的Tanner图不含4环,可用多种译码方法进行译码。本文是利用有限几何的特点提出一种构造量子LDPC码的方法,并对其进行了系统的理论分析。

2 基于有限几何的量子LDPC码的构造

有限几何包含欧氏几何与投影几何,欧氏几何相对投影几何要简单。在组合数学中,已知在GF(2s)上有2ms个m重向量(p0,p1,…,pm-1)( pi∈GF(2s))组成一个m维欧氏几何,记为EG(m,2s)。每一点m重向量看作欧氏几何中的一个点,而全零向量(0,0,…,0)记为欧氏几何的原点,在GF(2s)上这2ms个m重向量组成欧氏几何中的所有点,而这些向量又构成了GF(2s)的m维向量空间。因此,EG(m,2s)是由2ms个m重GF(2s)构成的向量空间,于是EG(m,2s)中的点与GF(2ms)中的元素一一对应。在欧氏几何EG(m,2s)中每条线由2s个点组成,并且有 条这样的线,另外每条线有2(m-1)s-1条与之平行,欧氏几何中的每一个点都会有 (2ms-1)/(2s-1)条线经过。在特殊情况下F可表示EG(m,2s)中的一条不经过原点(a∞=0)的直线[5],于是F可表示GF(2s)上的矢量:VF=(v0,v1,…,v2ms-2。如果分量vi的位置数ai在直线F上,则对应的vi为1,否则为0。把EG(m,2s)中所有不经过原点的向量VF对应校验矩阵的行向量,这样得到的校验矩阵具有循环的特性,并且所得的校验矩阵还具有LDPC码的性质:(1)行重与列重都是2s;(2)任两列或列同时为1的数目最多只有一个;(3)校验矩阵的密度很小。投影几何校验矩阵的构造与欧氏几何类似,只是PG(m,2s)的LDPC矩阵的行重与列重是2s+1。量子CSS码是从经典纠错码获得对应的量子码最有效的方法之一,该量子码的实现是以经典线性码为基础[2]。由于经典LDPC码是一种线性码,因此可以结合CSS码的构造来实现量子LDPC码的构造。设C1和C2为[n,k1]和[n,k2]的经典线性码,使有C2⊂C1,且C1和C2┴两者可纠正t个错误。于是可定义纠t个量子比特的一个[n,k1-k2]量子CSS(C1,C2)码。设x∈C1为C1中任意的一个码字,于是量子态∣x+C2>可定义为:

量子CSS(C1,C2)码就定义为由所有x∈C1的量子态∣x+C2>所张成的向量空间,C1中C2的陪集的数目为∣C1∣/∣C2∣,所以CSS(C1,C2)的维数为∣C1∣/∣C2∣=2k1-k2,因此CSS(C1,C2)是一个[n,k1-k2]量子码。

利用基于有限几何的LDPC码具有循环或准循环的特点,通过对循环多项式的处理可得到该码的对偶码,这是构造量子LDPC码的可行途径[6-7]。结合有限几何构造的LDPC矩阵和CSS码的定义,我们提出一种基于CSS码的量子LDPC码的构造方法。具体步骤如下:

(1)利用上面构造的LDPC码的校验矩阵H1,把H1矩阵中每行以q进行分离,即把每行的1均匀的分布到q行中,并且其1的位置不发生变化,这样分离后可得矩阵H";

(2)矩阵H"的行向量之间通过线性变换简化后可得矩阵H2,并且H2中的行向量可用其中的某一行向量S循环生成,而S可用多项式h(x)表示;

(3)由 g(x)=(xn+1)/(h(x))得到g(x),其中n是校验矩阵的列数。把g(x)作为生成矩阵可以得到一个码字空间C2;

(4)以H为校验矩阵可以得到其对偶码C1,而C2⊂C1,这样就可以生成CSS码。

3 构造方法的理论分析

由上面的构造过程可知,C1*H1T=0,C2*H2T=0。设矩阵H1与矩阵H2分别为:

\ykf04.tif>(3)

其中bi=(b11,b12,…,b1n);

设C1中的任一码子C=(C1,C2,…,Cn)),则由C1*H1T=0得:

H2是经过H"线性变化得到的,而H"又是对H1进行分离而生成的,所以存在:

两边乘以码子c后的

由此推得

进而可得

所以码空间C1、C2都在校验矩阵H2的对偶空间中。又码空间C2的维数小于码空间C1的维数,故可得到构造CSS码的基本条件C2⊂C1。具备了这样的条件就可以构造基于CSS码的量子LDPC码。

4 结束语

本文是在利用有限几何构造的稀疏校验矩阵的基础上,通过变换校验矩阵并以量子CSS码为理论依据获得基于有限几何的量子低密度奇偶校验码。由于本文的构造方法利用有限几何的特性,其所得的码字具有循环或准循环的特点,从而可以通过对多项式的处理得到该码字的对偶码,并且对该方法进行了充分的理论推导,所以用该方法构造量子LDPC码是一种简便可行的途径。

参考文献:

[1] 蔡乐才.量子纠错码的研究,四川理工学院学报,Vol.17,No.3,4,December,2004.

[2] 郑大钟,赵千川,译.量子计算和量子信息(二).北京:清华大学出版社,pp.92-99,February,2005.

[3] R.Gallager, "Low-Density Parity-Check Codes", IEEE Transactions on Information Theory, pp.21-28,January,1962.

[4] Y.Kou, S.Lin, and M.Fossorier,"Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results", IEEE Transactions on Information Theory, Vol.47,No.7 November,2001.

[5] Y.Kou, "Finite Geometry Low Density Parity Check Codes", Ph.D. dissertation, Dept. of Elec. And Computer Eng., Univ. of California,2001.

[6] D.J.C.Mackay, G.Mitchison, and P.L.McFadden, "Sparse-Graph Codes for Quantum Error-Correction", IEEE Transactions on Information Theory, vol.50, No.10, October,2004.

[7] M.S.Postol, "A Proposed Quantum Low Density Parity Check Code", arXiv/quant-ph/0108131,Aug,2001.

注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”

相关推荐

热门文章

优秀大学生实习报告【完整版】

最近发表了一篇名为《优秀大学生实习报告2022精选》的范文,好的范文应该跟大家分享,看完如果觉得有帮助请记得(CTRL+D)收藏本页。能拓展大学生的综合素质,培养适应型人才。实习是大学生拓展自身素质的主要载体之一,那么关于一份好的实习报告要怎么写?以下是小编为大家准备了优秀大学生实习报告2

最新倡导网络文明优秀演讲稿

本页是最新发布的《最新倡导网络文明优秀演讲稿》的详细范文参考文章,感觉写的不错,希望对您有帮助,这里给大家转摘到。在面前展示了一幅全新的生活画面,同时,美好的网络生活也需要我们用美德和文明共同创造,下面给大家分享关于最新倡导网络文明优秀演讲稿范文,欢迎阅读!倡导网络文明优秀演讲稿

2022年度集体荣誉感演讲稿大全【优秀范文】

本页是最新发布的《集体荣誉感演讲稿大全》的详细范文参考文章,感觉写的不错,希望对您有帮助,希望大家能有所收获。演讲稿是人们在工作和社会生活中经常使用的一种文体。它可以用来交流思想、感情,表达自己的主张、看法;也可以用来介绍自己的学习、工作情况和经验……下面是小编为大家整理的荣誉感演讲稿大全

2022年度最新大学活动开场白台词6篇

《最新大学活动开场白台词6篇》是一篇好的范文,感觉很有用处,重新编辑了一下发到。在不断进步的社会中,很多场合都需要有开场白,开场白很重要,很多时候会影响到对方对你的第一印象。那么,开场白一般是怎么写的呢?下面是小编收集整理的最新大学开场白台词,供大家参考借鉴,希望可以帮助到有需要的朋友。最

2022年度大学生个人实习报告最新(完整文档)

最近发表了一篇名为《2022年大学生个人实习报告最新》的范文,觉得有用就收藏了,希望大家能有所收获。使大学生增加社会阅历,积累经验。社会阅历和工作经验是职业场中的决定因素。只有参加实习,通过实习的检验,才能积累自身的阅历和经验。小编在这给大家带来2022年大学生个人实习报告最新,欢迎大

2022年我为学校添光彩演讲稿最新10篇(完整)

最近发表了一篇名为《我为学校添光彩演讲稿最新10篇》的范文,感觉很有用处,看完如果觉得有帮助请记得(CTRL+D)收藏本页。演讲稿是一种实用性比较强的文稿,是为演讲准备的书面材料。在当下社会,演讲稿与的生活息息相关,在写之前,可以先参考范文,下面小编给大家带来关于我为添光彩演讲稿,希望会对

2022年大学校长演讲稿5分钟(范文推荐)

《大学校长演讲稿5分钟》是一篇好的范文,感觉写的不错,希望对您有帮助,希望对网友有用。好的演讲稿可以引导听众,使听众能更好地理解演讲的内容。在我们平凡的日常里,演讲稿在演讲中起到的作用越来越大,来参考自己需要的演讲稿吧!下面是小编为大家整理的大学校长演讲稿5分钟,能够帮助到大家!大学校长演讲稿5分钟

五四精神演讲稿

本页是最新发布的《2022五四精神演讲稿》的详细范文参考文章,感觉很有用处,这里给大家转摘到。演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。以下是小编整理的2022五四演讲稿

关于河流污染演讲稿合集(完整)

最近发表了一篇名为《关于河流污染的演讲稿》的范文,感觉很有用处,重新编辑了一下发到。演讲稿具有逻辑严密,态度明确,观点鲜明的特点。在不断进步的时代,能够利用到演讲稿的场合越来越多,在写之前,可以先参考范文。下面是小编为大家整理的关于河流的演讲稿,希望能够帮助到大家!关于河流污

2022年不负青春演讲稿范本(2022年)

《不负青春演讲稿范文》是一篇好的范文,觉得应该跟大家分享,重新编辑了一下发到。每个人都会经历,等你到中年或老年时,相信你会有一段很宝贵的青春的回忆。下面是小编为大家整理的不负青春演讲稿范文,希望能够帮助到大家!不负青春演讲稿范文1敬爱的老师,亲爱的们:大家早上好。今天我演讲的主题是:十八而

2022教学工作会议演讲稿(全文完整)

《教学工作会议演讲稿》是一篇好的范文,觉得应该跟大家分享,希望大家能有所收获。演讲稿是人们在工作和社会生活中经常使用的一种文体。它可以用来交流思想,感情,表达主张,见解。也可以用来介绍自己的学习,工作情况和经验等等。下面是小编为大家整理的工作会议演讲稿,希望能够帮助到大家!教学工作会议演讲稿1各位:

五四青年节青春演讲稿

《五四青年节青春演讲稿2022》是一篇好的范文,觉得有用就收藏了,重新编辑了一下发到。青年们还要集中进行各种社会志愿和社会实践活动,还有许多地方在青年节期间举行****仪式。五四的核心内容为,进步,民主,科学。以下是小编为大家准备了五四青年节演讲稿2022范本,欢迎参阅。五四青年节青春演讲