当前位置: 简表范文网 > 专题范文 > 公文范文 >

向量更深入,复数有提升

| 来源:网友投稿

主 讲:沈新权

浙江省数学特级教师,嘉兴市数学会副会长.

推荐名言

可以用一次的想法是一个诀窍,如果可以用两次以上,那它就成为一种方法了.

——乔治·波利亚 (匈牙利数学家,提出了组合数学的重要工具波利亚计数定理)

向量与复数兼具代数与几何的特征,既能进行代数形式的运算,又能进行几何形式的变换,这种“身份”使它们能作为数学工具,解决函数、几何等多种数学问题.其中,复数还是高等数学中复变函数的基础.因此在自主招生考试中,向量与复数出现的频率比较高.

一、向量问题

例1 (2010年北京大学自主招生考试第4题) ■,■的夹角为θ,■=2,■=1,■=t■,■=(1-t)■,■=f(t)在t=t0时取得最小值. 若0<t0<■,求θ的取值范围.

解析: 设g(t)=■2, ∵ ■,■的夹角为θ,■=2,■=1,又■=■-■=(1-t)■-t■, ∴ g(t)=■2=(5+4cosθ)t2-(2+4cosθ)t+1. ∵ 5+4cosθ>0,∴ g(t)的图象开口向上,g(t)的判别式Δ=16(cos2θ-1)≤0. ∴ g(t)≥0,∴ 当t=t0=■时,■=f(t)取得最小值. 由0<■<■解得-■<cosθ<0, ∴ θ∈■,■.

例2 (2008年南京大学自主招生考试问答题第2题) 在△ABC中任取一点O,用SA,SB,SC分别表示△BOC,△AOC,△AOB的面积,求证:SA·■+SB·■+SC·■=0.

解析:如图1所示,以O为原点、OC所在的直线为x轴建立直角坐标系,设■=x,■=y,■=z,∠AOC=α,∠AOB=β,∠BOC=γ,其中α+β+γ=2π.

SA·■+SB·■+SC·■=■yzsinγ·(xcosα,xsinα)+■xzsinα·[ycos(α+β),ysin(α+β)]+■xysinβ·(z,0)=■xyz[cosαsinγ+sinαcos(α+β)+sinβ],■xyz[sinαsinγ+sinαsin(α+β)].

∵ γ=2π-(α+β), ∴ cosαsinγ+sinαcos(α+β)+sinβ=-cosαsin(α+β)+sinα·cos(α+β)+sinβ=-sinβ+sinβ=0. 又sinαsinγ+sinαsin(α+β)=-sinαsin(α+β)+sinαsin(α+β)=0, ∴ SA·■+SB·■+SC·■=0.

利用例2的结论,我们还可以证明:若△ABC的边长为a,b,c,①当O为△ABC的重心时,■+■+■=0;②当O为△ABC的内心时,a·■+b·■+c·■=0;③当O为△ABC的外心时,sin2A·■+sin2B·■+sin2C·■=0;④当O为△ABC的垂心时,tanA·■+tanB·■+tanC·■=0.

二、复数问题

从代数角度看,解决复数问题的关键是把复数问题实数化.在复数问题实数化时,既可以借助复数的代数形式,也可以利用复数的三角形式,同时还可充分利用共轭复数及复数模的相关性质简化解题过程.从几何角度看,解决复数问题的关键在于合理利用复数运算(加减乘除)的几何意义,减小运算量.

例3 (2008年上海交通大学自主招生考试第4题) 复数z=1,若存在负数a使得z2-2az+a2-a=0,则a= .

解析:要解决例3,同学们须掌握复数z=a+bi的三角形式z=r(cosθ+isinθ) ,其中模r=a2+b2,辐角θ由tanθ=■和θ的终边所在的象限确定.当复数的模为1时,利用复数的三角形式解决问题会相对简单一些.

设z=cosθ+isinθ,则z2-2az+a2-a=cos2θ-2acosθ+a2-a+i(sin2θ-2asinθ)=0,可得cos2θ-2acosθ+a2-a=0 (①),sin2θ-2asinθ=0 (②).由①式得sinθ=0或a=cosθ. 当sinθ=0时,a=■>0,∵ a<0,∴舍去;当a=cosθ时,解得a=■. ∵ a<0, ∴ a=■.

解决例3的关键是利用复数相等的充要条件,把复数问题转化为实数问题来解决.

例4 (2011年“卓越联盟”自主招生考试第4题) i为虚数单位,设复数z满足z=1,则■的最大值为

(A) ■-1(B) 2-■(C) ■+1(D) 2+■

解析:我们先来了解复数加减法的几何意义.

复数加法的几何意义:设复数z1=a+bi, z2=c+di在复平面上所对应的向量为■,■,则■=(a,b),■=(c,d). 以■,■为邻边作平行四边形OZ1ZZ2,则对角线OZ对应的向量■=■+■=(a+c,b+d). ■就是复数z=z1+z2=(a+c)+(b+d)i在复平面上对应的向量.

复数减法的几何意义:设复数z1=a+bi,z2=c+di在复平面上所对应的向量为■,■,则■=■-■=(a-c,b-d). ■就是复数z=z1-z2=(a-c)+(b-d)i在复平面上对应的向量.

如果像例3一样设复数的三角形式,或直接用代数形式求解■,运算量会很大.我们可以先化简■. ∵ ■=■=■=z-(1+i), ∴ 问题转化为求z-(1+i)的最大值. ∵ z=1,∴ 由复数减法的几何意义可知,z-(1+i)的最大值为复平面中单位圆上的点到复数1+i所对应的点的距离的最大值, ∴ ■max=■+1. 选C.

例5 (2003年复旦大学自主招生考试第8题) 已知z1=2,z2=3,z1+z2=4 ,求■.

解析:解决例5时,我们会用到两个知识.一是公式z·■=z2;二是若关于x的一元二次方程ax2+bx+c=0 (a,b,c为实数)的判别式Δ=b2-4ac<0,则方程的根为一对共轭的虚根x=■,韦达定理仍旧成立.

由题意可得z1·■=4,z2·■=9,z1+z22=16=(z1+z2)(■+■)=13+■+■. 令■=z,则9z+■=3,解得z=■±■i, 即■=■±■i.

例6 (2011年“卓越联盟”自主招生考试第10题) 设σ是坐标平面上的点按顺时针方向绕原点作角度为■的旋转,τ表示坐标平面上的点关于y轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ;用σk表示连续k次σ的变换,则στσ2τσ3τσ4是

(A) σ4(B) σ5 (C) σ2τ(D) τσ2

解析:我们先来了解复数的乘除法的几何意义.

复数乘法的几何意义:设复数z1=r1(cosα+isinα),z2=r2(cosβ+isinβ),在坐标系中把复数z1所对应的向量■按逆时针(β>0)或顺时针(β<0)旋转β个角度,并将■的模长伸长(r2>1)或缩短(0<r2<1)到原来的r2倍,由此得到的向量所对应的复数就是z1·z2.

同理,复数除法的几何意义为:把复数z1所对应的向量■按顺时针(β>0)或逆时针(β<0)旋转β个角度,并将■的模长伸长(0<r2<1)或缩短(r2>1)到原来的■倍,由此得到的向量所对应的复数就是■ (z2≠0).

要解决例6,我们先设复平面上的点所对应的复数为z=r(cosθ+isinθ),记σz为复数z对应的点做一次σ变换后得到的点所对应的复数,记τz为复数z对应的点做一次τ变换后得到的点所对应的复数,由复数除法的几何意义可得,σz=rcosθ-■π+isinθ-■π,τz=r[cos(π-θ)+isin(π-θ)],由此可得复数对应的点每次变换后所对应的辐角.根据题中定义的变换规则,στσ2τσ3τσ4后,z所对应的辐角变化依次为θ ■ θ-■π ■ ■π-θ ■ ■π-θ ■ ■π+θ ■ θ-■π ■ ■π-θ ■ ■π-θ. 同理, 经过A、B、C、D选项的变换,复数z对应的点所对应的复数的辐角分别为θ-■π,θ-■π,■π-θ,■π-θ. 选D.

【下期预告】

在自主招生考试中,对数列内容的考查达到了怎样的程度·极限问题的考查重点又在哪里·在下一讲中,我们将就这两个问题展开讨论.

相关推荐

热门文章

防自然灾害安全教育心得7篇通用【完整版】

本页是最新发布的《防自然灾害安全教育心得7篇通用》的详细范文参考文章,觉得有用就收藏了,为了方便大家的阅读。教育能让更新了观念,改善了思想,了解了当前的社会形式。你在安全教育中一定有意想不到的收获,写一篇安全教育心得回顾一下吧。你是否在找正准备撰写“防自然灾害安全教育心得”,下面小编收集了

小学生寒假安全教育家长心得3篇通用

本页是最新发布的《小学生寒假安全教育家长心得3篇通用》的详细范文参考文章,好的范文应该跟大家分享,这里给大家转摘到。是生命之本,安全是头等财富!我们每个人都应该重视自己安全。写一篇安全心得能让自己在安全教育过后的总结中得到许多的收获。你是否在找正准备撰写“小寒假安全教育家长心得”

2022年70年周年校庆演讲稿最新范本(精选文档)

《70年周年校庆演讲稿最新范文》是一篇好的范文,觉得有用就收藏了,希望大家能有所收获。演讲稿的最终目的是用于讲话,所以,它是有声语言,是书面化的口语。它一方面是把口头语言变为书面语言,即化声音为文字,起到规范文字、有助演讲的作用。下面是小编为大家整理的70年演讲稿最新范文,希望能够帮助到大家!70年

2022年度清明节感怀演讲稿【完整版】

本页是最新发布的《2022清明节感怀演讲稿》的详细范文参考文章,好的范文应该跟大家分享,重新编辑了一下发到。4月4日,是我国的传统节日:清明节,让怀着无比沉重和景仰的心情来缅怀革命,继承革命传统。你知道么,今天小编整理了清明节感怀演讲稿供大家参考,一起来看看吧!清明节感怀演讲稿一

2022教学工作会议演讲稿(全文完整)

《教学工作会议演讲稿》是一篇好的范文,觉得应该跟大家分享,希望大家能有所收获。演讲稿是人们在工作和社会生活中经常使用的一种文体。它可以用来交流思想,感情,表达主张,见解。也可以用来介绍自己的学习,工作情况和经验等等。下面是小编为大家整理的工作会议演讲稿,希望能够帮助到大家!教学工作会议演讲稿1各位:

五四青年节青春演讲稿

《五四青年节青春演讲稿2022》是一篇好的范文,觉得有用就收藏了,重新编辑了一下发到。青年们还要集中进行各种社会志愿和社会实践活动,还有许多地方在青年节期间举行****仪式。五四的核心内容为,进步,民主,科学。以下是小编为大家准备了五四青年节演讲稿2022范本,欢迎参阅。五四青年节青春演讲

2022最新青年担当演讲稿(全文完整)

《最新青年担当演讲稿》是一篇好的范文,感觉很有用处,这里给大家转摘到。沧海,无人愿甘沦平庸,无人愿在茫茫粟漠中归依。青年们,当在光华中,勇披战衣,秉承之责任心,书写高昂之战歌。下面是小编为大家整理的最新青年担当演讲稿,希望能够帮助到大家!最新青年担当演讲稿1敬爱的老师,亲爱的同学:大家好!

2022年度清明节主题学生作文500字合集

《2022清明节主题学生作文500字》是一篇好的范文,觉得应该跟大家分享,这里给大家转摘到。这来之不易的幸福生活是革命用自己的鲜血换来的,作为一名青年志愿者,一定不辜负烈士们的遗愿,让我们踏着烈士们的足迹奋勇向前!下面是小编为大家带来的关于2022主题学生作文500字,希望能对大家

2022年高三毕业典礼演讲稿(精选文档)

最近发表了一篇名为《高三2022年毕业典礼演讲稿》的范文,觉得有用就收藏了,重新整理了一下发到这里。演讲是演讲者与听众、听众与听众的三角信息交流,演讲者不能以传达自己的思想和情感、情绪为满足,他必须能控制住自己与听众、听众与听众情绪的应和与交流。

五四精神演讲稿

本页是最新发布的《2022五四精神演讲稿》的详细范文参考文章,感觉很有用处,这里给大家转摘到。演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。以下是小编整理的2022五四演讲稿

学雷锋致英雄演讲稿怎么写(完整)

最近发表了一篇名为《学雷锋致英雄演讲稿怎么写》的范文,觉得应该跟大家分享,这里给大家转摘到。演讲稿特别注重结构清楚,层次简明。在日新月异的现代社会中,在很多情况下需要用到演讲稿,如何写一份恰当的演讲稿呢?下面是小编为大家整理的学致英雄演讲稿怎么写,希望能够帮助到大家!学雷锋致英雄

语文新课程纲要教材解读培训心得3篇通用

本页是最新发布的《语文新课程纲要教材解读培训心得3篇通用》的详细范文参考文章,觉得有用就收藏了,看完如果觉得有帮助请记得(CTRL+D)收藏本页。语文要让了解文章的含义,吸取其中的精华,感悟文章的写法。你知道语文心得的写法?不妨来学习一下如何写语文培训心得。你是否在找正准备撰写“语文新课程